- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ackermann, Maegen A. (1)
-
Albertelli, Taylor (1)
-
Bobbili, Prameela J. (1)
-
Bunch, T. Jared (1)
-
Campbell, Stuart G. (1)
-
Chamberlain, Stormy J (1)
-
Chamberlain, Stormy J. (1)
-
Chung, Michael S (1)
-
Core, Leighton (1)
-
Cotney, Justin (1)
-
Cotney, Justin L (1)
-
Crandall, Leann J (1)
-
Dupont-Thibert, Clémence M (1)
-
Germain, Noelle (1)
-
Germain, Noelle D. (1)
-
Glatt-Deeley, Heather R (1)
-
Gorka, Dea (1)
-
Hall, Stephen P. (1)
-
Hsiao, Jack S. (1)
-
Jacoby, Daniel L. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11–q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.more » « less
-
Hsiao, Jack S.; Germain, Noelle D.; Wilderman, Andrea; Stoddard, Christopher; Wojenski, Luke A.; Villafano, Geno J.; Core, Leighton; Cotney, Justin; Chamberlain, Stormy J. (, Proceedings of the National Academy of Sciences)Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A , a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript ( UBE3A-ATS ) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis . However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A . However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A , demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS . These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.more » « less
-
Ng, Ronald; Manring, Heather; Papoutsidakis, Nikolaos; Albertelli, Taylor; Tsai, Nicole; See, Claudia J.; Li, Xia; Park, Jinkyu; Stevens, Tyler L.; Bobbili, Prameela J.; et al (, JCI Insight)
An official website of the United States government
